Lachmoewe2cele4Netflix is a good example of hybrid systems. They make recommendations by comparing the watching and searching habits of similar users (i.e. collaborative filtering) as well as by offering movies that share characteristics with films that a user has rated highly (content-based filtering).

A variety of techniques have been proposed as the basis for recommender systems: collaborative, content-based, knowledge-based, and demographic techniques. Each of these techniques has known shortcomings, such as the well known cold-start problem for collaborative and content-based systems (what to do with new users with few ratings) and the knowledge engineering bottleneck in knowledge-based approaches. A hybrid recommender system is one that combines multiple techniques together to achieve some synergy between them.

  • Collaborative: The system generates recommendations using only information about rating profiles for different users. Collaborative systems locate peer users with a rating history similar to the current user and generate recommendations using this neighborhood.
  • Content-based: The system generates recommendations from two sources: the features associated with products and the ratings that a user has given them. Content-based recommenders treat recommendation as a user-specific classification problem and learn a classifier for the user’s likes and dislikes based on product features.
  • Demographic: A demographic recommender provides recommendations based on a demographic profile of the user. Recommended products can be produced for different demographic niches, by combining the ratings of users in those niches.
  • Knowledge-based: A knowledge-based recommender suggests products based on inferences about a user’s needs and preferences. This knowledge will sometimes contain explicit functional knowledge about how certain product features meet user needs.

The term hybrid recommender system is used here to describe any recommender system that combines multiple recommendation techniques together to produce its output. There is no reason why several different techniques of the same type could not be hybridized, for example, two different content-based recommenders could work together, and a number of projects have investigated this type of hybrid: NewsDude, which uses both naive Bayes and kNN classifiers in its news recommendations is just one example.

Seven hybridization techniques:

  • Weighted: The score of different recommendation components are combined numerically.
  • Switching: The system chooses among recommendation components and applies the selected one.
  • Mixed: Recommendations from different recommenders are presented together.
  • Feature Combination: Features derived from different knowledge sources are combined together and given to a single recommendation algorithm.
  • Feature Augmentation: One recommendation technique is used to compute a feature or set of features, which is then part of the input to the next technique.
  • Cascade: Recommenders are given strict priority, with the lower priority ones breaking ties in the scoring of the higher ones.
  • Meta-level: One recommendation technique is applied and produces some sort of model, which is then the input used by the next technique.

From: Wikipedia

Hybrid Recommendation Systems
Tagged on: